Subscribe Us

Responsive Advertisement

Advertisement

5.Finding the Kth Prime spoj

 #include <bits/stdc++.h>

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
template <class type1>
#define ll long long int
#define endl "\n"
#define ordered_set tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update>
using ordered_multiset = tree <type1, null_type, less_equal <type1>, rb_tree_tag, tree_order_statistics_node_update>;
 //ordered_multiset <ll> kek;(declaration for multiorder set)
// ordered_set o_set;(declaration)
//kek.order_of_key(i);(strictly less then i for multi order set)
//o_set.order_of_key(5) ;(strictly less then i for multi order set)
#define yes cout << "YES\n"
#define no cout << "NO\n"
const ll mxN=87000008;
bool isPrime[mxN+2];
ll pr[5000000+5];
void sieve()
{
     isPrime[0]=true;
     isPrime[1]=true;
     for(ll i=2;i*i<=mxN;i++)
     {
         if(isPrime[i]==false)
         {
             for(ll j=i*i;j<=mxN;j+=i)
             {
                 isPrime[j]=true;
             }
         }
     }
     ll cnt=0;
     for(ll i=2;i<=mxN;i++)
     {
         if(cnt>=5000000+1)break;
        if(isPrime[i]==false)
        {
            pr[cnt]=i;
            cnt++;
        }
     }
}
int main()
{
     sieve();
    ios_base::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
   
     ll t;
     cin>>t;

     while(t--)
     {
        ll n;
        cin>>n;
        n--;
        cout<<pr[n]<<endl;
     }

    return 0;
}

Post a Comment

0 Comments