Subscribe Us

Responsive Advertisement

Advertisement

7.height and dept of a tree.cpp

 #include <bits/stdc++.h>

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
template <class type1>
#define ll long long int
#define endl "\n"
#define ordered_set tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update>
using ordered_multiset = tree <type1, null_type, less_equal <type1>, rb_tree_tag, tree_order_statistics_node_update>;
 //ordered_multiset <ll> kek;(declaration for multiorder set)
// ordered_set o_set;(declaration)
//kek.order_of_key(i);(strictly less then i for multi order set)
//o_set.order_of_key(5) ;(strictly less then i for multi order set)
#define yes cout << "YES\n"
#define no cout << "NO\n"
#define mod 1000000007
ll POW(ll a,ll b)
{   ll ans=1;
   while(b>0)
   {   if(b%2)ans=(ans*a)%mod;
       b/=2;
       a=(a*a)%mod;
   }
   return ans;
}
vector<ll>adj[500000];
ll dept[500000];
ll height[500000];
void dfs(ll node,ll par)
{
     
    for(auto u:adj[node])
    {
        // cout<<node<<"-> "<<u<<endl;
        if(par==u)continue;
       dept[u]=dept[node]+1;
       dfs(u,node);
        height[node]=max(height[u]+1,height[node]);
    }
}
int main()
{
    ios_base::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
   
     ll n;
     cin>>n;
     ll i;
     for(i=0;i<n-1;i++)
     {
         ll u,v;
         cin>>u>>v;
         adj[u].push_back(v);
         adj[v].push_back(u);
     }
    //  for(i=1;i<=n;i++)
    //  {
    //      cout<<i<<" ->";
    //      for(auto u:adj[i])
    //      {
    //          cout<<u<<" ";
    //      }
    //      cout<<endl;
    //  }
     dfs(1,0);
     for(i=1;i<=n;i++)
     {
        cout<<dept[i]<<" "<<height[i]<<endl;
     }
    return 0;
}

Post a Comment

0 Comments